1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
//! A collection of signal filters. //! //! To filter a bunch of samples, first create the filter and samples. //! //! There are two types of filters: stateless, and stateful filters. //! Stateless filters can be used to convolve samples, while stateful filters transform individual samples. //! //! ### Stateless filters //! //! Stateless filters are pure functions and are used in conjunction with the convolve function: //! ``` //! use synthrs::filter::{convolve, cutoff_from_frequency, lowpass_filter}; //! use synthrs::synthesizer::{quantize_samples, make_samples}; //! use synthrs::wave::sine_wave; //! //! // Generate a bunch of samples at two different frequencies //! let samples = make_samples(0.5, 44_100, |t: f64| -> f64 { //! 0.5 * (sine_wave(6000.0)(t) + sine_wave(80.0)(t)) //! }); //! //! // Create a lowpass filter, using a cutoff of 400Hz at a 44_100Hz sample rate (ie. filter out frequencies >400Hz) //! let lowpass = lowpass_filter(cutoff_from_frequency(400.0, 44_100), 0.01); //! //! // Apply convolution to filter out high frequencies //! let lowpass_samples = quantize_samples::<i16>(&convolve(&lowpass, &samples)); //! ``` //! #### Common stateless filter arguments: //! //! * `cutoff`: as a fraction of sample rate, can be obtained from //! `cutoff_from_frequency(cutoff, sample_rate)`. (eg. for a lowpass filter //! frequencies below `sample_rate` / `cutoff` are preserved) //! * `band`: transition band as a fraction of the sample rate. This determines how //! the cutoff "blends", or how harsh a cutoff this is. //! //! ### Stateful filters //! //! Stateful filters are structs which hold some state, such as `DelayLine` which has to //! keep in memory historical samples. //! //! They can be used to transform a bunch of samples using `map`. //! //! ``` //! use synthrs::filter::Comb; //! use synthrs::synthesizer::{quantize_samples, make_samples}; //! use synthrs::wave::sine_wave; //! //! // Creates a comb filter with //! // * 0.2 second delay //! // * 44100Hz, //! // * 0.5 dampening inverse factor //! // * 0.5 dampening factor //! // * 0.5 feedback factor //! let mut comb = Comb::new(0.2, 44_100, 0.5, 0.5, 0.5); //! //! let samples = make_samples(0.5, 44_100, |t: f64| -> f64 { sine_wave(440.0)(t) }); //! //! let filtered_raw: Vec<f64> = samples //! .into_iter() //! .map(|sample| comb.tick(sample)) //! .collect(); //! let filtered_quantized = quantize_samples::<i16>(&filtered_raw); //! ``` //! //! See: `examples/filters.rs` //! //! An all-poss filter is implemented as a generator in `crate::wave::allpass`. use std::f64::consts::PI; /// Creates a low-pass filter. Frequencies below the cutoff are preserved when /// samples are convolved with this filter. pub fn lowpass_filter(cutoff: f64, band: f64) -> Vec<f64> { let mut n = (4.0 / band).ceil() as usize; if n % 2 == 1 { n += 1; } let sinc = |x: f64| -> f64 { (x * PI).sin() / (x * PI) }; let sinc_wave: Vec<f64> = (0..n) .map(|i| sinc(2.0 * cutoff * (i as f64 - (n as f64 - 1.0) / 2.0))) .collect(); let blackman_window = blackman_window(n); let filter: Vec<f64> = sinc_wave .iter() .zip(blackman_window.iter()) .map(|tup| *tup.0 * *tup.1) .collect(); // Normalize let sum = filter.iter().fold(0.0, |acc, &el| acc + el); filter.iter().map(|&el| el / sum).collect() } /// Creates a Blackman window filter of a given size. pub fn blackman_window(size: usize) -> Vec<f64> { (0..size) .map(|i| { 0.42 - 0.5 * (2.0 * PI * i as f64 / (size as f64 - 1.0)).cos() + 0.08 * (4.0 * PI * i as f64 / (size as f64 - 1.0)).cos() }) .collect() } /// Creates a high-pass filter. Frequencies above the cutoff are preserved when /// samples are convolved with this filter. pub fn highpass_filter(cutoff: f64, band: f64) -> Vec<f64> { spectral_invert(&lowpass_filter(cutoff, band)) } /// Creates a low-pass filter. Frequencies between `low_frequency` and `high_frequency` /// are preserved when samples are convolved with this filter. pub fn bandpass_filter(low_frequency: f64, high_frequency: f64, band: f64) -> Vec<f64> { assert!(low_frequency <= high_frequency); let lowpass = lowpass_filter(high_frequency, band); let highpass = highpass_filter(low_frequency, band); convolve(&highpass, &lowpass) } /// Creates a low-pass filter. Frequencies outside of `low_frequency` and `high_frequency` /// are preserved when samples are convolved with this filter. pub fn bandreject_filter(low_frequency: f64, high_frequency: f64, band: f64) -> Vec<f64> { assert!(low_frequency <= high_frequency); let lowpass = lowpass_filter(low_frequency, band); let highpass = highpass_filter(high_frequency, band); add(&highpass, &lowpass) } /// Given a filter, inverts it. For example, inverting a low-pass filter will result in a /// high-pass filter with the same cutoff frequency. pub fn spectral_invert(filter: &[f64]) -> Vec<f64> { assert_eq!(filter.len() % 2, 0); let mut count = 0; filter .iter() .map(|&el| { let add = if count == filter.len() / 2 { 1.0 } else { 0.0 }; count += 1; -el + add }) .collect() } pub fn convolve(filter: &[f64], input: &[f64]) -> Vec<f64> { let mut output: Vec<f64> = Vec::new(); let h_len = (filter.len() / 2) as isize; for i in -(filter.len() as isize / 2)..(input.len() as isize - 1) { output.push(0.0); for j in 0isize..filter.len() as isize { let input_idx = i + j; let output_idx = i + h_len; if input_idx < 0 || input_idx >= input.len() as isize { continue; } output[output_idx as usize] += input[input_idx as usize] * filter[j as usize] } } output } /// Performs elementwise addition of two `Vec<f64>`s. Can be used to combine filters together /// (eg. combining a low-pass filter with a high-pass filter to create a band-pass filter) pub fn add(left: &[f64], right: &[f64]) -> Vec<f64> { left.iter() .zip(right.iter()) .map(|tup| *tup.0 + *tup.1) .collect() } /// Returns the cutoff fraction for a given cutoff frequency at a sample rate, which can be /// used for filter creation. pub fn cutoff_from_frequency(frequency: f64, sample_rate: usize) -> f64 { frequency / sample_rate as f64 } /// Simple linear attack/decay envelope. No sustain or release. pub fn envelope(relative_t: f64, attack: f64, decay: f64) -> f64 { if relative_t < 0.0 { return 0.0; } else if relative_t < attack { return relative_t / attack; } else if relative_t < attack + decay { return 1.0 - (relative_t - attack) / decay; } 0.0 } /// A stateful delay line. Samples are delayed for `delay_length` seconds. /// /// https://en.wikipedia.org/wiki/Analog_delay_line /// /// ``` /// use synthrs::filter::AllPass; /// /// let mut allpass = AllPass::new(1.0, 44_100, 0.5); /// let samples: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0]; /// /// let filtered = samples.into_iter().map(|sample| allpass.tick(sample)); /// ``` /// /// Taken from: https://github.com/irh/freeverb-rs/blob/master/freeverb/src/delay_line.rs #[derive(Clone, Debug)] pub struct DelayLine { pub buf: Vec<f64>, index: usize, pub delay_length: f64, pub delay_samples: usize, pub sample_rate: usize, } impl DelayLine { /// Creates a new delay line. Samples are delayed for `delay_length` seconds. pub fn new(delay_length: f64, sample_rate: usize) -> DelayLine { let delay_samples = ((delay_length * sample_rate as f64).round() + 1.0) as usize; DelayLine { buf: vec![0.0; delay_samples], index: 0, delay_length, delay_samples, sample_rate, } } pub fn read(&self) -> f64 { self.buf[self.index] } pub fn write(&mut self, value: f64) { self.buf[self.index] = value; if self.index == self.buf.len() - 1 { self.index = 0; } else { self.index += 1; } } } /// A stateful all-pass filter. /// /// https://en.wikipedia.org/wiki/All-pass_filter /// /// ``` /// use synthrs::filter::AllPass; /// /// let mut allpass = AllPass::new(1.0, 44_100, 0.5); /// let samples: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0]; /// /// let filtered = samples.into_iter().map(|sample| allpass.tick(sample)); /// ``` /// /// Taken from: https://github.com/irh/freeverb-rs/blob/master/freeverb/src/all_pass.rs #[derive(Clone, Debug)] pub struct AllPass { delay_line: DelayLine, /// Feedback multiplier (0.5 works) pub feedback: f64, } impl AllPass { /// Creates a new all-pass filter. Samples are delayed for `delay_length` seconds. pub fn new(delay_length: f64, sample_rate: usize, feedback: f64) -> AllPass { AllPass { delay_line: DelayLine::new(delay_length, sample_rate), feedback, } } pub fn tick(&mut self, input: f64) -> f64 { let delayed = self.delay_line.read(); self.delay_line.write(input + delayed * self.feedback); -input + delayed } } /// A stateful comb filter. /// /// https://en.wikipedia.org/wiki/Comb_filter /// /// ``` /// use synthrs::filter::Comb; /// /// let mut comb = Comb::new(1.0, 44_100, 0.5, 0.5, 0.5); /// let samples: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0]; /// /// let filtered = samples.into_iter().map(|sample| comb.tick(sample)); /// ``` /// /// Taken from: https://github.com/irh/freeverb-rs/blob/master/freeverb/src/comb.rs #[derive(Clone, Debug)] pub struct Comb { delay_line: DelayLine, filter_state: f64, /// 0.5 works pub dampening_inverse: f64, /// 0.5 works pub dampening: f64, /// 0.5 works pub feedback: f64, } impl Comb { /// Creates a new comb filter. Samples are delayed for `delay_length` seconds. pub fn new( delay_length: f64, sample_rate: usize, dampening_inverse: f64, dampening: f64, feedback: f64, ) -> Comb { Comb { dampening_inverse, dampening, delay_line: DelayLine::new(delay_length, sample_rate), feedback, filter_state: 0.0, } } pub fn tick(&mut self, input: f64) -> f64 { let output = self.delay_line.read(); self.filter_state = output * self.dampening_inverse + self.filter_state * self.dampening; self.delay_line .write(input + self.filter_state * self.feedback); output } } #[cfg(test)] mod tests { use super::*; #[test] fn test_convolve() { let filter = vec![1.0, 1.0, 1.0]; let input = vec![0.0, 0.0, 3.0, 0.0, 3.0, 0.0, 0.0]; let output = vec![0.0, 3.0, 3.0, 6.0, 3.0, 3.0, 0.0]; assert_eq!(convolve(&filter, &input), output); } #[test] fn test_add() { let a = vec![1.0, -1.0, -8.0]; let b = vec![-1.0, 5.0, 3.0]; let expected = vec![0.0, 4.0, -5.0]; assert_eq!(add(&a, &b), expected); } #[test] #[allow(clippy::float_cmp)] fn test_envelope() { assert_eq!(envelope(0.25, 1.0, 1.0), 0.25); assert_eq!(envelope(0.5, 1.0, 1.0), 0.5); assert_eq!(envelope(1.0, 1.0, 1.0), 1.0); assert_eq!(envelope(1.5, 1.0, 1.0), 0.5); assert_eq!(envelope(3.0, 1.0, 1.0), 0.0); assert_eq!(envelope(-0.5, 1.0, 1.0), 0.0); } #[test] #[allow(clippy::float_cmp)] fn test_delay_line() { let mut delay_line = DelayLine::new(3.0, 1); delay_line.write(1.0); assert_eq!(delay_line.read(), 0.0); delay_line.write(3.0); assert_eq!(delay_line.read(), 0.0); delay_line.write(5.0); assert_eq!(delay_line.read(), 0.0); delay_line.write(7.0); assert_eq!(delay_line.read(), 1.0); delay_line.write(11.0); assert_eq!(delay_line.read(), 3.0); delay_line.write(13.0); assert_eq!(delay_line.read(), 5.0); delay_line.write(17.0); assert_eq!(delay_line.read(), 7.0); } }